已知sin(a+135°)=5/13,cos(45°-β )=3/5,且-45°扫码下载作业帮拍照答疑一拍即得

问题描述:

已知sin(a+135°)=5/13,cos(45°-β )=3/5,且-45°

α+3π/4∈(π/2,π),π/4-β∈(-π/2,0)

因为-45°<A

本题关键在于角度配凑的问题,同时留意角度范围。
∵-45°又∵sin(a+135°)=5/13 ∴cos(a+135°)=-√[1-(5/13)²]=-12/13

∵45°又∵cos(45°-β)=3/5 ∴sin(45°-β)=-√[1-(3/5)²]=-4/5

∴cos(a-β)=-cos[(a+135°)+(45°-β)]=-cos(a+135°)cos(45°-β)+sin(a+135°)sin(45°-β)
=-(-12/13)*(3/5)+(-5/13)*(4/5)=16/65
∴cos2(a-β)=2cos²(a-β)-1=2*(16/65)²-1=-3713/4225


因为-45°<A所以90°<A+135°<180°
因为sin(A+135°)=5/13
所以cos(A+135°)=-7/13
又因为45°<B所以-90°<45°-B<0°
因为cos(45°-B)=4/5
所以sin(45°-B)=-3/5
因为A+135°+45°-B=180°+A-B
所以cos(A-B)=-cos(180°+A-B)=-cos(A+135°+45°-B)
=sin(A+135°)sin(45°-B)-cos(45°-B)cos(A+135°)
=(5/13)x(-3/5)-(-7/13)x(4/5)=1/5
所以cos2(A-B)=2cos²(A-B)-1=2x1/25-1=-23/25

-45°