y=sin(2x+π/4)cos(2x+π/4)最小正周期为

问题描述:

y=sin(2x+π/4)cos(2x+π/4)最小正周期为
y=tan(x+(π/4))的定义域

y=sin(2x+π/4)cos(2x+π/4)=1/2sin(4x+π/2)
w=4,所以最小正周期是2π/4=π/2
y=tan(x+(π/4))定义域是x+(π/4)≠π/2+kπ
即x≠π/4+kπ