在三角形ABC中,a+c=2b,A-C=pi/3.在三角形ABC中,a+c=2b,A-C=pi/3,求证:A = 2pi/3 - B/2 ,C= pi/3 - B/2求Sin B/2 Sin B =

问题描述:

在三角形ABC中,a+c=2b,A-C=pi/3.
在三角形ABC中,a+c=2b,A-C=pi/3,
求证:A = 2pi/3 - B/2 ,C= pi/3 - B/2
求Sin B/2 Sin B =

(1)
A - C = pi/3
A + C = pi - B
所以 :
2A = 4pi/3 - B
即:A = 2pi/3 - B
C = pi - A - B
= pi/3 - B/2
(2)
由正弦定理及“a+c=2b”,得:
sinA + sinC = 2sinB
sinA + sinC = 2sin((A+C)/2)cos((A-C)/2)
= 2cos(pi/2 - (A+C)/2) cos(pi/6)
= 2cos(B/2) * √3/2
= √3cos(B/2)
2sinB = 4sin(B/2)cos(B/2)
所以:
√3cos(B/2) = 4sin(B/2)cos(B/2)
所以:
cos(B/2) = 0(B=pi,故舍去)
或sin(B/2) = √3/4
因此:
cos(B/2) = √13/4
sinB = 2sin(B/2)cos(B/2) = √39/8