在三角形ABC中,a+c=2b,∠a-∠c=60,求sinB的值?

问题描述:

在三角形ABC中,a+c=2b,∠a-∠c=60,求sinB的值?


因为a+c=2b,由正弦定理得,
sinA+sinC=2sinB=2sin(A+C)
因为A-C=60度
所以sin(C+60)+sinC=2sin(60+2C)
sinC*cos60+cosCsin60+sinC=2sin(60+2C)
3/2*sinC+根号3/2*cosC=4*sin(30+C)*cos(C+30)
根号3*(根号3/2*sinC+1/2*cosC)=4*sin(30+C)*cos(C+30)
根号3*sin(30+C)=4*sin(30+C)*cos(C+30)
得cos(C+30)=根号3/4
得sin(30+C)=根号13/4
得sin(60+2C)=2*根号3/4*根号13/4=根号39/8=sin(A+C)=sinB

a=90 b=60 c=30 sinB=┎3/2

在三角形ABC中,
a/sinA = b/sinB = c/sinC
a + c = 2b
所以,
sinA + sinC = 2sinB
2sin[(A+C)/2] * cos[(A-C)/2] = 2 * 2 * sin(B/2) * cos(B/2)
sin[(A+C)/2] * cos30 = 2 * sin(B/2) * cos(B/2)
cos[90 - (A+C)/2] * cos30 = 2 * sin(B/2) * cos(B/2)
cos(B/2) * cos30 = 2 * sin(B/2) * cos(B/2)
cos30 = 2 * sin(B/2)
所以,
sin(B/2) = 1/2 *cos30 = 根3 / 4
cos(B/2)=根13/4
sinB =2sin(B/2)cos(B/2)
= 2*根3/4*根13/4
= 根39/8