z=f(x,y) xy+yz+xz=1 ,求dz
问题描述:
z=f(x,y) xy+yz+xz=1 ,求dz
答
把z看做x,y的函数,方程xy+yz+xz=1两边分别对X求偏导数,得y+yz‘(x)+z+xz’(x)=0,其中z‘(x)表示z对x的偏导数。z’(x)=-(y+z)/(x+y)。同理z‘(y)=-(x+z)/(x+y)。所以dz=z’(x)dx+z‘(y)dy=-(y+f(x,y))/(x+y)dx-(x+f(x,y))/(x+y)dy。
答
dz=(∂ z / ∂ x)dx+(∂ z / ∂ y)dyxy+yz+xz-1=0设g(x,y,z)=xy+yz+xz-1 ∂ g / ∂ x =y+z ① ∂ g / ∂ y =x+z ② ∂ g / ∂ z =x+y ③∂ ...