如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=2,AB=AD=2.(1)求证:AO⊥平面BCD;(2)求异面直线AB与CD所成角的余弦值.

问题描述:

如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=2,AB=AD=

2


(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

(1)证明:△ABD中∵AB=AD=2,O是BD中点,BD=2∴AO⊥BD 且 AO=AB2-BO2=1△BCD中,连结OC∵BC=DC=2∴CO⊥BD 且 CO=BC2-BO2=3△AOC中 AO=1,CO=3,AC=2∴AO 2+CO2=AC2 故 AO...
答案解析:(1)连接OC,由BO=DO,AB=AD,知AO⊥BD,由BO=DO,BC=CD,知CO⊥BD.在△AOC中,由题设知AO=1,CO=

3
,AC=2,故AO2+CO2=AC2,由此能够证明AO⊥平面BCD.
(2)取AC的中点M,连接OM、ME、OE,由E为BC的中点,知ME∥AB,OE∥DC,故直线OE与EM所成的锐角就是异面直线AB与CD所成的角.在△OME中,EM=
1
2
AB=
2
2
,OE=
1
2
DC=1,由此能求出异面直线AB与CD所成角大小的余弦.
考试点:直线与平面垂直的判定;异面直线及其所成的角.
知识点:本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题.