设 三角形ABC的内角A,B,C所对的边a,b,c,若b^2=ac,cos(A-C)+cosB=3/2求B。PS:有没哪位朋友能教教我呢。
问题描述:
设 三角形ABC的内角A,B,C所对的边a,b,c,若b^2=ac,cos(A-C)+cosB=3/2
求B。
PS:有没哪位朋友能教教我呢。
答
cos(A-C)+cosB=3/2
= 2·cos【(A-C+B)/2】·cos【(A-C-B)/2】 = 3/2 ,
即:2·cos【(π/2 - C)】·cos【(π/2 - A)】 = 3/2 ,
即:sinC·sinA = 3/4
b^2=ac , 由正弦定理:b^2/ac = 1 = (sinB)^2/sinAsinC = (sinB)^2/(3/4),
即:(sinB)^2 = 3/4 , sinB = 正负根3/2 , B = 60°或120° ,
若B取120° , 则cos(A-C) = 3/2 + 1/2 = 2 > 1,矛盾!,故B = 60°
答
cos(A-C)+cosB=cos(A-C)-cos(A+C)=cosAcosC+sinAsinC-cosAcosC+sinAsinC
=2sinAsinC=3/2
sinAsinC=3/4
根据正弦定理,a/sinA=b/sinB=c/sinC=2R
b^2=sin^B*4R^2 a=sinA*2R c=sinC*2R
所以,sin^B=sinA*sinC=3/4
因为B