已知cos(a-6分之π)+sina=5分之4倍根号3,则sin(a+6分之7π)等于?

问题描述:

已知cos(a-6分之π)+sina=5分之4倍根号3,则sin(a+6分之7π)等于?

cos(a-π/6)+sina=4/5根号3,即是:根号3/2cosa+3/2sina=4/5根号3……一式。
而sin(a+7/6π)=sin(a+1/6π)=-1/2cosa-根号3/2sina,一式各项除以负根号3即可等到答案 ,答案是5/4

解析:∵cos(a-π/6)+sina=cosacosπ/6+sinasiπ/6+sina=√3/2cosa+3/2sina=√3(1/2cosa+√3/2sina)=√3sin(a+π/6)=4√3/5即sin(a+π/6)=4/5∴sin(a+7π/6)=sin[π+(a+π/6)]=-sin(a+π/6)=-4/5