如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.
问题描述:
如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.
(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;
(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.
答
(1)∵在Rt△ABC中,∠BAC=90°,O为BC的中点,∴OA=12BC=OB=OC,即OA=OB=OC;(2)△OMN是等腰直角三角形.理由如下:连接AO∵AC=AB,OC=OB∴OA=OB,∠NAO=∠B=45°,在△AON与△BOM中AN=BM∠NAO=∠BOA=OB∴△A...
答案解析:(1)由于△ABC是直角三角形,点O是BC的中点,根据直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,故有OA=OB=OC=
BC;1 2
(2)由于OA是等腰直角三角形的斜边上的中线,根据等腰直角三角形的性质知,∠CAO=∠B=45°,OA=OB,又有AN=MB,所以由SAS证得△AON≌△BOM可得:ON=OM ①∠NOA=∠MOB,于是有,∠NOM=∠AOB=90°,所以△OMN是等腰直角三角形.
考试点:等腰三角形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.
知识点:本题利用了等腰直角三角形的性质,全等三角形的判定和性质求解.