四边形ABFC∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=AE证四边形BECE是什么特殊的四边形.
问题描述:
四边形ABFC∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=AE证四边形BECE是什么特殊的四边形.
在四边形ABCF中∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.四边形BECE是什么特殊的四边形;试说明理由
答
∵BC的垂直平分线EF交BC
∴∠FDB=90 BD=DC
∴BE=EC FB=FC
∴∠EBC=∠BCP
∴∠BCA=90
∴∠CBA+∠A=90
∵∠CBA+∠FEB=90 ∴∠FEB=∠A ∴FE‖CA
∴∠A=∠EFC ∵∠BFE=∠EFC ∴∠BFE=∠FEB
∴△BDF≌△BED(AAS)∴FD=DE∴BECF为平行四边形
∵FE⊥BC∴BECF为菱形