已知函数f(x)=根号3sin(2x+派/6)+cos(2x+派/6),求当x属于[0.派/2]时,函数f(x)的值域
问题描述:
已知函数f(x)=根号3sin(2x+派/6)+cos(2x+派/6),求当x属于[0.派/2]时,函数f(x)的值域
答
f(x)=√3sin(2x+π/6)+cos(2x+π/6)
=2sin[(2x+π/6)+(π/6)]
=2sin(2x+π/3)
因为x∈[0,π/2],则:
2x+π/3∈[π/3,4π/3]
得:sin(2x+π/3)∈[-√3/2,1]
则:y∈[-√3,2]