高数题:设f(x)在R上有二阶连续导数,且f(0)=0,x不等于0时,g(x)=f(x)/x;x=0时,g(x)=f'(0)
问题描述:
高数题:设f(x)在R上有二阶连续导数,且f(0)=0,x不等于0时,g(x)=f(x)/x;x=0时,g(x)=f'(0)
证g'(x)在R上有一阶连续导数.下面好像是个提示:x不等于0时,g'(x)=(xf'(x)-f(x))/x^2,x等于0时,g'(x)=1/2f'(0) 时间很紧迫,
答
应该是证g(x)在R上有一阶连续导数吧?当x≠0时,g(x)=f(x)/x∴g'(x) = [xf'(x)-f(x)]/x² g'(x)在x≠0时连续x=0时,g'(0) = lim(x→0) [g(x)-g(0)]/(x-0)=lim(x→0) [f(x)/x-f'(0)]/x=lim(x→0) [f(x)-xf'(0)]/x...这个我也觉得很奇怪……题目上写的就是证g'(x)应该是g(x)因为g'(0)=(1/2)f''(0)而题设只有f(x)二阶可导,是否三阶可导并不确定所以g''(0)是否存在不确定嗯嗯~~那是否一定需要用洛必达法则,可以不用吗?因为f(x)是隐函数,所以只能用洛必达法则