设F1,F2分别是椭圆x^2/4+y^2=1的左右焦点.若点p是该椭圆上的一个懂点,求向量PF1*向量PF2的最大和最小值

问题描述:

设F1,F2分别是椭圆x^2/4+y^2=1的左右焦点.若点p是该椭圆上的一个懂点,求向量PF1*向量PF2的最大和最小值

x^2/4+y^2=1c^2=a^2-b^2=4-1=3所以c=√3那么F1(-√3,0),F2(√3,0)设P(2cosθ,sinθ)(0≤θ≤2π)则PF1*PF2=(-√3-2cosθ,0-sinθ)*(√3-2cosθ,0-sinθ)=4(cosθ)^2-3+(sinθ)^2=3(cosθ)^2-2因为-1≤cosθ≤1所以0...