设f(x)=lnx,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与g(1x)的大小关系;(Ⅲ)求a的取值范围,使得g(a)-g(x)<1a对任意x>0成立.
问题描述:
设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与g(
)的大小关系;1 x
(Ⅲ)求a的取值范围,使得g(a)-g(x)<
对任意x>0成立.1 a
答
(Ⅰ)由题设知f(x)=lnx,g(x)=lnx+1x,∴g'(x)=x-1x2,令g′(x)=0得x=1,当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间.当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递...
答案解析:(I)求导,并判断导数的符号确定函数的单调区间和极值、最值,即可求得结果;
(Ⅱ)通过函数的导数,利用函数的单调性,半径两个函数的大小关系即可.
(Ⅲ)利用(Ⅰ)的结论,转化不等式,求解即可.
考试点:A:利用导数研究函数的单调性 B:导数在最大值、最小值问题中的应用
知识点:此题是个难题.主要考查导数等基础知识,考查推理论证能力和、运算求解能力,考查函数与方程思想,数形结合思想,化归和转化思想,分类与整合思想.其考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.