已知函数f(x)=ex-e-x+1(e是自然对数的底数),若f(a)=2,则f(-a)的值为(  )A. 3B. 2C. 1D. 0

问题描述:

已知函数f(x)=ex-e-x+1(e是自然对数的底数),若f(a)=2,则f(-a)的值为(  )
A. 3
B. 2
C. 1
D. 0

∵f(x)=ex-e-x+1,
f(a)=2,
∴ea-e-a+1=2,
∴ea-e-a=1,
∴f(-a)=e-a-ea+1=-(ea-e-a)+1=-1+1=0.
故选D.
答案解析:由f(x)=ex-e-x+1,f(a)=2,知ea-e-a=1,由此能求出f(-a)的值.
考试点:有理数指数幂的化简求值.
知识点:本题考查有理数指数幂的化简求值,是基础题.解题时要认真审题,仔细解答.