设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且与y轴交于点A,若△OAF(O为坐标原点)的面积为4,求抛物线的方程.

问题描述:

设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且与y轴交于点A,若△OAF(O为坐标原点)的面积为4,求抛物线的方程.

抛物线y2=ax(a≠0)的焦点F坐标为(

a
4
,0),
则直线l的方程为y=2(x-
a
4
),
它与y轴的交点为A(0,-
a
2
),
所以△OAF的面积为
1
2
|
a
4
|•|
a
2
|=4,
解得a=±8.
所以抛物线方程为y2=±8x.