若函数f(x)=loga(2x^2+x) (a>0,a≠1)在区间(1/2,1)内恒有f(x)>0,则f(x)的单调递增区间是————?我自己做的答案是负无穷到负二分一~可是错了.

问题描述:

若函数f(x)=loga(2x^2+x) (a>0,a≠1)在区间(1/2,1)内恒有f(x)>0,则f(x)的单调递增区间是————?
我自己做的答案是负无穷到负二分一~可是错了.

由于当在在区间(1/2,1)内2x^2+x单调增且范围为(1,3),推得a>1,从而2x^2+x>1时递增,即
(2x-1)(x+1)>0,得x>1/2或x

先确定f(x)定义域为x0
令g(x)=2x^2+x,显然开口向上、对称轴x=-1/4
当x0时,g(x)为增函数
令h(x)=loga(x),此为对数函数
当a>1时,h(x)为增函数
当01时,有2x^2+x>1,即x1/2
当0