一道函数连续性的证明题若f(x)在x=0处连续,且f(x+y)=f(x)+f(y),对任意x,y∈(-无穷,+无穷)都成立,试证明f(x)为(-无穷,+无穷)上的连续函数
问题描述:
一道函数连续性的证明题
若f(x)在x=0处连续,且f(x+y)=f(x)+f(y),对任意x,y∈(-无穷,+无穷)都成立,试证明f(x)为(-无穷,+无穷)上的连续函数
答
当x=0时,f(y)=f(0)+f(y)
则f(0)=0
由于f(x)在x=0处连续,则有f(x)->0(x-->0)
对任意有
f(x+Δx)-f(x)=f(Δx)-->0 当Δx-->0
所以得证f(x)的连续性