已知x1,x2是关于x的一元二次方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115.(1)求k的值;(2)求x12+x22+8的值.

问题描述:

已知x1,x2是关于x的一元二次方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115.
(1)求k的值;
(2)求x12+x22+8的值.

(1)∵x1,x2是方程x2-6x+k=0的两个根,∴x1+x2=6,x1x2=k,∵x12x22-x1-x2=115,∴k2-6=115,解得k1=11,k2=-11,当k1=11时,△=36-4k=36-44<0,∴k1=11不合题意当k2=-11时,△=36-4k=36+44>0,∴k2=-11符合题意...
答案解析:(1)方程有两个实数根,必须满足△=b2-4ac≥0,从而求出实数k的取值范围,再利用根与系数的关系,x12x22-x1-x2=115.即x12x22-(x1+x2)=115,即可得到关于k的方程,求出k的值.(2)根据(1)即可求得x1+x2与x1x2的值,而x12+x22+8=(x1+x2)2-2x1x2+8即可求得式子的值.
考试点:根与系数的关系;解一元二次方程-直接开平方法;根的判别式.
知识点:总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)根与系数的关系是:x1+x2=−ba,x1x2=ca.根据根与系数的关系把x12x22-x1-x2=115转化为关于k的方程,解得k的值是解决本题的关键.