怎样求1元2次方程的解!最好通俗点!

问题描述:

怎样求1元2次方程的解!
最好通俗点!

.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7.
3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1
时,方程成立,则必有根为x=1.
4.分析:一元二次方程 ax2+bx+c=0若有一个根为零,
则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.
另外,还可以将x=0代入,得c=0,更简单!
5.分析:原方程变为 x2-3x-10=0,
则(x-5)(x+2)=0
x-5=0 或x+2=0
x1=5, x2=-2.
6.分析:Δ=9-4×3=-37.分析:2x2=0.15
x2=
x=±
注意根式的化简,并注意直接开平方时,不要丢根.
8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2,
整理为:(x-)2=
方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方.
9.分析:x2-2x=m, 则 x2-2x+1=m+1
则(x-1)2=m+1.
中考解析
考题评析
1.(甘肃省)方程的根是( )
(A) (B) (C) 或 (D) 或
评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确
选项.也可以用因式分解的方法解此方程求出结果对照选项也可以.选项A、B是只考虑了一方面忘记了一元
二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的.正确选项为
C.
另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免.
2.(吉林省)一元二次方程的根是__________.
评析:思路,根据方程的特点运用因式分解法,或公式法求解即可.
3.(辽宁省)方程的根为( )
(A)0 (B)–1 (C)0,–1 (D)0,1
评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、
B两选项只有一个根.D选项一个数不是方程的根.另外可以用直接求方程根的方法.
4.(河南省)已知x的二次方程的一个根是–2,那么k=__________.
评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解.
5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方
根,即可选出答案.
课外拓展
一元二次方程
一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二
次的整式方程. 一般形式为
ax2+bx+c=0, (a≠0)
在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它
的倒数之和等于 一个已给数,即求出这样的x与,使
x=1, x+ =b,
x2-bx+1=0,
他们做出( )2;再做出 ,然后得出+ 及 - .可见巴比伦人已知道一元二次
方程的求根公式.但他们当时并不接受 负数,所以负根是略而不提的.
埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b.
在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式.
希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中
之一.
公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x2+px+q=0的一个求根公
式.
在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种
不同的形式,令 a、b、c为正数,如ax2=bx、ax2=c、 ax2+c=bx、ax2+bx=c、ax2=bx+c 等.把二次方程分成
不同形式作讨论,是依照丢番图的做法.阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一 次
给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识.十六世纪意大利的
数学家们为了解三次方程而开始应用复数根.
韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系.
我国《九章算术.勾股》章中的第二十题是通过求相当于 x2+34x-71000=0的正根而解决的.我国数学
家还在方程的研究中应用了内插法.