在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记为An令an=log以2为底An(1)求数列{An}的前n项和Sn(2)求Tn=tana2×tana4+tana2×tana6+...+tana2n×tana(2n+2)
问题描述:
在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记为An
令an=log以2为底An
(1)求数列{An}的前n项和Sn
(2)求Tn=tana2×tana4+tana2×tana6+...+tana2n×tana(2n+2)
答
(1)q^(n+1) = 2q= 2^[1/(n+1) ]An = 1.q.q^2.(q^n)(2)= 2.q^[(n+1)n/2]= 2.2^(n/2)= 2^[(n+2)/2]an = logAn= (n+2)/2Sn = a1+a2+...+an= (1/4)n(n+5)(2)tan(a2n).tan(a(2n+2))=tan(n+1).tan(n+2)= [tan(n+2) - tan(n...