正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),为什么p>5?
问题描述:
正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),为什么p>5?
答
我们首先改一下条件和结论:
a,b,c,d由'>0'改为'≥0',那么结论应改为P≥5
证明如下:
固定c,d,a+b=1-c-d=x
那么我们看√(3a+1)+√(3b+1)的最小值
平方得到(√(3a+1)+√(3b+1))²=3a+3b+2+2√(9ab+3a+3b+1)=3x+2+2√(9ab+3x+1)
由于固定了c,d也就固定了x,所以当9ab取到最小值时,整个式子最小
那么最小值当然是一个为0,另一个为x的时候
同样,任意固定两个变量,都可以把剩余两个变量一个变为0,一个变为最大而使得整体式子最小
所以P的最小值应为一个变量为1,剩余变量为0的时候取到
不妨设a=1,b=c=d=0
那么此时最小值P=5
所以P≥5
但是由于题设中a,b,c,d>0,所以不等号成立条件无法达到,所以P>5