1.正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),则p与5的大小关系,为什么?

问题描述:

1.正实数a,b,c,d满足a+b+c+d=1,设p=√(3a+1)+√(3b+1)+√(3c+1)+√(3d+1),则p与5的大小关系,为什么?
2.已知非零实数a,b满足|2a-4|+|b+2|+√【(a-3)b²】+4=2a,则a+b=?,请写出过程.

第一题:目前我没有想到更好的办法:
P=0,所以a>=3
则此式可化简为:2a-4+|b+2|+√【(a-3)b²】+4=2a
则-√【(a-3)b²】=|b+2|,因为绝对值和根号下都大于0,
所以只有b+2=0才能满足上是,即b=-2且a>=3
则a+b>=1
实在抱歉,第一题能力有限啊!