函数f(x)=(√3 +tan x)cos x,0≤x≤π/2,则f(x)的最大值为?
问题描述:
函数f(x)=(√3 +tan x)cos x,0≤x≤π/2,则f(x)的最大值为?
答
f(x)=(√3 +tanx)cosx =√3 *cosx+sinx =2(√3/2 *cosx+1/2*sinx) =2(sinπ/3*cosx+cosπ/3*sinx) =2sin(x+π/3),因为0≤x≤π/2,所以π/3≤x+π/3≤5π/6,1/2≤sin(x+π/3)≤1,所以f(x)的最大值为...