[(-1+根号3i)^3]/[(1+i)^6]+[-2+i]/[1+2i]的值是

问题描述:

[(-1+根号3i)^3]/[(1+i)^6]+[-2+i]/[1+2i]的值是

[(-1+根号3i)^3]/[(1+i)^6]+[-2+i]/[1+2i]
=[(-1+根号3i)³]/(2i)³ + [(-2+i)(1-2i)]/[(1+2i)(1-2i)]
=[(-1+根号3i)/(2i)]³ + (5i)/5
=[根号3/2 - (1/2)*i]³+ i
=[cos(-π/6)+ i*sin(-π/6)]³+ i
=cos(-π/2)+ i*sin(-π/2)+ i
=-i+i
=0