答
∵四边形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
即△ABC是等边三角形,
同理:△ADC是等边三角形
∴∠B=∠EAC=60°,
在△ABF和△CAE中,
,
∴△ABF≌△CAE(SAS);
故①正确;
∴∠BAF=∠ACE,
∵∠AEH=∠B+∠BCE,
∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;
故②正确;
在HD上截取HK=AH,连接AK,
∵∠AHC+∠ADC=120°+60°=180°,
∴点A,H,C,D四点共圆,
∴∠AHD=∠ACD=60°,∠ACH=∠ADH,
∴△AHK是等边三角形,
∴AK=AH,∠AKH=60°,
∴∠AKD=∠AHC=120°,
在△AKD和△AHC中,
|
∠AKD=∠AHC |
∠ADH=∠ACH |
AD=AC |
|
|
,
∴△AKD≌△AHC(AAS),
∴CH=DK,
∴DH=HK+DK=AH+CH;
故③正确;
∵∠OAD=∠AHD=60°,∠ODA=∠ADH,
∴△OAD∽△AHD,
∴AD:DH=OD:AD,
∴AD2=OD•DH.
故④正确.
故选D.
答案解析:由菱形ABCD中,AB=AC,易证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE;则可得∠BAF=∠ACE,利用三角形外角的性质,即可求得∠AHC=120°;在HD上截取HK=AH,连接AK,易得点A,H,C,D四点共圆,则可证得△AHK是等边三角形,然后由AAS即可证得△AKD≌△AHC,则可证得AH+CH=DH;易证得△OAD∽△AHD,由相似三角形的对应边成比例,即可得AD2=OD•DH.
考试点:相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.
知识点:此题考查了相似三角形的判定与性质、菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.