已知a>0,b>0,c>0,abc=1,证明1/a^3(b+c)+1/b^3(a+c)+c^3(a+b)>=3/2柯西不等式做

问题描述:

已知a>0,b>0,c>0,abc=1,证明1/a^3(b+c)+1/b^3(a+c)+c^3(a+b)>=3/2柯西不等式做

注意到,由于abc=1,所以用(abc)^2乘以原式左边可得:
1/a^3(b+c)+1/b^3(a+c)+c^3(a+b)=(bc)^2/[a(b+c)]+(ca)^2/[b(c+a)]+(ab)^2/[c(a+b)]
由柯西不等式:
[a(b+c)+b(c+a)+c(a+b)][(bc)^2/[a(b+c)]+(ca)^2/[b(c+a)]+(ab)^2/[c(a+b)]]>=(ab+bc+ca)^2
而a(b+c)+b(c+a)+c(a+b)=2(ab+bc+ca)
所以(bc)^2/[a(b+c)]+(ca)^2/[b(c+a)]+(ab)^2/[c(a+b)]>=(ab+bc+ca)/2
由均值不等式:ab+bc+ca>=3*三次根号下(a^2b^2c^2)=3
所以1/a^3(b+c)+1/b^3(a+c)+c^3(a+b)=(bc)^2/[a(b+c)]+(ca)^2/[b(c+a)]+(ab)^2/[c(a+b)]>=3/2
证毕。。

由于1/a^3(b+c)=abc/a^2(ab+bc)=1/a^2(1/b+1/c)令x=1/a,y=1/b,z=1/c,又由于abc=1,a、b、c∈R+,有xyz=1,且x、y、z∈R+,于是只需证明x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2.因为x^2/(y+z)+(y+z)/4≥x,y^2/(x+z)+(x+z)/4...