设A是n阶是对称矩阵,并且A^2=A.证明存在正交矩阵C,使C^-1AC=C^TAC=diag(1.1000.0)
问题描述:
设A是n阶是对称矩阵,并且A^2=A.证明存在正交矩阵C,使
C^-1AC=C^TAC=diag(1.1000.0)
答
设A是n阶是对称矩阵,并且A^2=A.证明存在正交矩阵C,使
C^-1AC=C^TAC=diag(1.1000.0)