如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,求证:△BCE≌△ACD.
问题描述:
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,求证:△BCE≌△ACD.
答
证明:∵△ABC和△CDE都是等边三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°,
∴∠ACB+∠ACE=∠ECD+∠ACE,
即∠BCE=∠ACD,
∵在△BCE和△ACD中,
,
BC=AC ∠BCE=∠ACD CE=CD
∴△BCE≌△ACD(SAS).