(1)求y=根号3sinx+cosx的周期,最大值递增区间(2)若cosa+2sina=-根号5,求tana的值
问题描述:
(1)求y=根号3sinx+cosx的周期,最大值
递增区间(2)若cosa+2sina=-根号5,求tana的值
答
(1)y=√3sinx+cosx
=2sin(x+π/3)
∴T=2π/1=2π,ymax=2
-π/2+2kπ≤ x+π/3≤π/2+2kπ,k∈Z
-5π/6+2kπ≤x≤π/6+2kπ,k∈Z
单调递增区间为:[-5π/6+2kπ,π/6+2kπ],k∈z
(2)cosa+2sina=√5
两边平方:cos²a+4sin²a+4cosasina=5
两边同除以(sin²a+cos²a),得:
tan²a-4tana+4=0
(tana-2)²=0
tana=2
数学辅导团为你解答,不懂请追问,满意请采纳!谢谢
答
(1) y=√3sinx+cosx
=2(√3/2sinx+1/2cosx)
=2(sinxcosπ/6+sinπ/6cosx)
=2sin(x+π/6)
周期T=2π
最大值=2
递增区间:2kπ-π/2≤x+π/6