limx→-∞(√x^2+x+1根号结束+x)为什么等于-1/2
问题描述:
limx→-∞(√x^2+x+1根号结束+x)为什么等于-1/2
答
你好!
lim(x→ -∞) √(x^2 +x+1) + x
= lim(x→ -∞) [√(x^2 +x+1) + x ][ √(x^2 +x+1) - x ] / [ √(x^2 +x+1) - x ]
= lim(x→ -∞) [ (x^2 +x+1) - x^2 ] / [ √(x^2 +x+1) - x ]
= lim(x→ -∞) (x+1) / [ √(x^2 +x+1) - x ]
= lim(x→ -∞) (- 1 - 1/x ) / [√(1 + 1/x + 1/x^2 ) + 1 ] 【同除以- x ,因为 - x >0 】
= - 1/2