两曲线x^2+y^2=16与xy=1的交点是

问题描述:

两曲线x^2+y^2=16与xy=1的交点是

设x=4cost
y=4sint
16sintcost=1
sin2t=1/8
cos2t=±3√7/8
求出sint cost
x,y同号

联立方程组得
x^2+y^2=16 (1)
xy=1 (2)
(1)+2*(2)得
(x+y)^2=18
所以x+y=正负2倍根下3
然后联立分别解得
3/2*2^(1/2)-1/2*14^(1/2)
3/2*2^(1/2)+1/2*14^(1/2)
-3/2*2^(1/2)-1/2*14^(1/2)
-3/2*2^(1/2)+1/2*14^(1/2)
(用matlab解的,y的横坐标)
然后代入求x

x²+y²=16 (1)xy=1 (2)(1)+(2)*2 得 x²+y²+2xy=18(x+y)²=18 x+y=±√18(1)-(2)*2 得 x²+y²-2xy=14(x-y)²=14 x-y=±√14四个方程组x+y=√18x-y=√14x+y=√18x-y=-√14x+y=-√...