Limn趋于无穷〔根号(n+2)-根号(n+1)+根号n]

问题描述:

Limn趋于无穷〔根号(n+2)-根号(n+1)+根号n]

√(n+2)-√(n+1)+√n=1/(√(n+2)+√(n+1))+√n->无穷大
应该是减去2√(n+1)吧

lim[√(n+2) - √(n+1) + √n]
n→∞
∵lim[√(n+2) - √(n+1)]
n→∞
= lim[√(n+2)-√(n+1)][√(n+2)+√(n+1)]/[√(n+2)+√(n+1)] [分子有理化]
n→∞
= lim 1/[√(n+2)+√(n+1)]
n→∞
= 1/[√∞+√∞]
= 1/∞
= 0
∴lim[√(n+2) - √(n+1) + √n]
n→∞
= lim[0 + √n]
n→∞
= ∞