多元函数的极限的问题呢多元函数极限的定义:设二元函数f(p)=f(x,y)的定义域D,p0(x0,y0)是D的聚点 如果存在函数A 对于任意给定的正数ε  总存在正数δ  使得当点p(x,y)∈D∩∪(p0,δ)时,都有Ⅰf(p)-AⅠ=Ⅰf(x,y)-AⅠ﹤ε成立 那么就称常数A为函数f(x,y)当(x,y)‐(x0,y0)时的极限 其实我很疑惑呢 就是聚点的定义包括边界点 但是边界点好像不存在极值吧 因为如果界线外趋近于p0点极限不存在呢 那么为什么极限的定义里有边界点的极限呢

问题描述:

多元函数的极限的问题呢
多元函数极限的定义:设二元函数f(p)=f(x,y)的定义域D,p0(x0,y0)是D的聚点 如果存在函数A 对于任意给定的正数ε  总存在正数δ  使得当点p(x,y)∈D∩∪(p0,δ)时,都有Ⅰf(p)-AⅠ=Ⅰf(x,y)-AⅠ﹤ε成立 那么就称常数A为函数f(x,y)当(x,y)‐(x0,y0)时的极限 其实我很疑惑呢 就是聚点的定义包括边界点 但是边界点好像不存在极值吧 因为如果界线外趋近于p0点极限不存在呢 那么为什么极限的定义里有边界点的极限呢