已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.(1)求数列{an}的通项公式;(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
问题描述:
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
答
(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an-1),即an2-an-12-2(an+an-1)=0,∴(an+an-1)(an-an-1-2)=0,∵an+an-1>0∴a...
答案解析:(1)由题意知a1=s1=
1 4
+
a
2
1
a1−1 2
,解得a1=3,由此能够推出数列{an}是以3为首项,2为公差的等差数列,所以an=3+2(n-1)=2n+1.3 4
(2)由题意知Tn=3×21+5×22+…+(2n+1)•2n,2Tn=3×22+5×23+(2n-1)•2n+(2n+1)2n+1,二者相减可得到Tn=a1b1+a2b2+…+anbn的值.
考试点:数列递推式;数列的求和.
知识点:本题考查数列的性质和应用,解题时要认真审题,仔细解答.