求下列函数图形的拐点及凹凸区间 (1)y=x+1/x(x>0)

问题描述:

求下列函数图形的拐点及凹凸区间 (1)y=x+1/x(x>0)

y''=2/X^3 根据拐点的必要条件:设f(x)在(a,b)内二阶可导,x0∈(a,b),若(x0,f(x0))是曲线y=f(x)的一个拐点,则f‘’(x0)=0
此函数在X>0区间无拐点

那就要求二阶导数了.
y=x+1/x
y'=1-1/x^2
y''=2/x^3
容易看出x=0处是其拐点,x=1是其驻点.
区间(0,1]是其凸区间;
区间[1,+∞)是其凹区间.