lim(x-0)tanx-x/x-sinx=
问题描述:
lim(x-0)tanx-x/x-sinx=
答
=[(secx)^2-1]/(1-cosx)
=2secxsecxtanx / sinx
=2(secx)^2sinxsecx / sinx
=2(secx)^3
=2
答
解 利用L'Hospital法则,可得
lim(x→0)(tanx-x) /(x-sinx)
= lim(x→0)[(secx)^2-1] /(1-cosx)
= lim(x→0)(1+cosx) / (cosx)^2
= 2.