化简(x³+3)/(x²-1)-(x+1)/(x-1)+1等于多少?

问题描述:

化简(x³+3)/(x²-1)-(x+1)/(x-1)+1等于多少?

原式=(x³+3)/(x²-1)-(x+1)²/(x²-1)+(x²-1)/(x²-1)
=[x³+3-(x²+2x+1)+(x²-1)] /(x²-1)
=(x³-2x+1)/(x²-1)
=[x(x²-1)-(x-1)] /(x²-1)
=x - 1/(x+1)

错了,第一个是x²+3原式=(x²+3)/(x+1)(x-1)-(x+1)²/(x+1)(x-1)+(x+1)(x-1)/(x+1)(x-1)=(x²+3-x²-2x-1+x²-1)/(x+1)(x-1)=(x²-2x+1)/(x+1)(x-1)=(x--1)²/(x+1)(x-1)=(x-1)/(x+...