设一质点的运动规律为s(t)=e^(1-3t)cos(2πt+π/3),试求t=1/3时质点运动的速度v
问题描述:
设一质点的运动规律为s(t)=e^(1-3t)cos(2πt+π/3),试求t=1/3时质点运动的速度v
答
s(t)=e^(1-3t)cos(2πt+π/3)v=s(t)'=-3e^(1-3t)cos(2πt+π/3)+e^(1-3t)*[-2πsin(2πt+π/3)]=-3e^(1-3t)cos(2πt+π/3)-2πe^(1-3t)sin(2πt+π/3)t=1/3时v=-3*e^0*(-1)-2πe^0*0=-3*1*-1-0=3