已知圆想x2+Y2+X-6Y+M=0与直线x+2y-3=0相交于p,q两点,o为原点,且op垂直于oq,求实数m的值

问题描述:

已知圆想x2+Y2+X-6Y+M=0与直线x+2y-3=0相交于p,q两点,o为原点,且op垂直于oq,求实数m的值

x+2y-3=0, x = 3-2y 代入x +y +x-6y+m=0, 5y - 20y + OQ的斜率k2 = [2 - (√△)/10]/[-1 +(√△)/5] OP垂直于OQ,

由x+2y-3=0得x=3-2y代入x2+y2+x-6y+m=0化简得:5y2-20y+12+m=0y1+y2=4,y1•y2= (12+m)/5设P、Q的坐标分别为(x1,y1)、(x2,y2),由OP⊥OQ可得:x1•x2+y1•y2=0x1•x2+y1•y2=(3-2y1)...