(2011•东莞)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)(1)问:始终与△AGC相似的三角形有△HAB△HAB及△HGA△HGA;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.
问题描述:
(2011•东莞)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)
(1)问:始终与△AGC相似的三角形有△HAB△HAB及△HGA△HGA;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形.
答
,
∵AB=AC=9,∠BAC=90°,
∴BC=
=
=9
.
答:y关于x的函数关系式为y=
(0<x<9
).
(3)①当CG<
BC时,∠GAC=∠H<∠HAG,
∴AG<GH,
∵GH<AH,
∴AG<CH<GH,
又∵AH>AG,AH>GH,
此时,△AGH不可能是等腰三角形,
②当CG=
BC时,G为BC的中点,H与C重合,△AGH是等腰三角形,
此时,GC=
,即x=
,
③当CG>
BC时,由(1)△AGC∽△HGA,
所以,若△AGH必是等腰三角形,只可能存在GH=AH,
若GH=AH,则AC=CG,此时x=9,
如图(3),当CG=BC时,
注意:DF才旋转到与BC垂直的位置,
此时B,E,G重合,∠AGH=∠GAH=45°,
所以△AGH为等腰三角形,所以CG=9
.
综上所述,当x=9或x=
或9
时,△AGH是等腰三角形.
答案解析:(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.
(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.
(3)此题要采用分类讨论的思想,当CG<
BC时,当CG=
BC时,当CG>
BC时分别得出即可.
考试点:相似三角形的判定与性质;等腰三角形的性质;等腰直角三角形;旋转的性质.
知识点:此题主要考查学生对相似三角形的判定与性质,等腰三角形的性质,等腰直角三角形的性质,旋转的性质等知识点的理解和掌握,综合性较强,难易程度适中,是一道很典型的题目.
(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,
∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,
∴∠H=∠CAG,
∵∠ACG=∠B=45°,
∴△AGC∽△HAB,
∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA;
故答案为:△HAB和△HGA.
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=
81 |
x |
∵AB=AC=9,∠BAC=90°,
∴BC=
AB2+AC2 |
92+92 |
2 |
答:y关于x的函数关系式为y=
81 |
x |
2 |
(3)①当CG<
1 |
2 |
∴AG<GH,
∵GH<AH,
∴AG<CH<GH,
又∵AH>AG,AH>GH,
此时,△AGH不可能是等腰三角形,
②当CG=
1 |
2 |
此时,GC=
9 |
2 |
2 |
9 |
2 |
2 |
③当CG>
1 |
2 |
所以,若△AGH必是等腰三角形,只可能存在GH=AH,
若GH=AH,则AC=CG,此时x=9,
如图(3),当CG=BC时,
注意:DF才旋转到与BC垂直的位置,
此时B,E,G重合,∠AGH=∠GAH=45°,
所以△AGH为等腰三角形,所以CG=9
2 |
综上所述,当x=9或x=
9 |
2 |
2 |
2 |
答案解析:(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.
(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.
(3)此题要采用分类讨论的思想,当CG<
1 |
2 |
1 |
2 |
1 |
2 |
考试点:相似三角形的判定与性质;等腰三角形的性质;等腰直角三角形;旋转的性质.
知识点:此题主要考查学生对相似三角形的判定与性质,等腰三角形的性质,等腰直角三角形的性质,旋转的性质等知识点的理解和掌握,综合性较强,难易程度适中,是一道很典型的题目.