已知X>=1,y>=1,证明x+y+1/xy
问题描述:
已知X>=1,y>=1,证明x+y+1/xy
答
1/x+1/y+xy-(x+y+1/xy)=(xy-1)(x-1)(y-1)/xy
X>=1,y>=1
所以xy-1≧0,x-1≧0,y-1≧0,xy≧1
故(xy-1)(x-1)(y-1)/xy≧0
1/x+1/y+xy-(x+y+1/xy)≧0
x+y+1/xy
答
呵呵,这题目有问题,你看后面有两个/
答
1/x+1/y+xy -( x+y+1/xy)
=1/X - x +1/Y -y +XY -1/xy
=1/xy(y-xxy+x-xyy+xxyy-1)
=1/xy (y+x -xy(y+x) + (xy)^2 -1)
=1/xy ((y+x)(1-xy)+(xy-1)(xy+1))
=1/xy ((xy-1)( xy +1 - y - x))
=(xy-1)/xy *( (x-1)(y-1))
=1/xy * (x-1)(y-1)(xy-1)
x≥1 y≥1 xy≥1
所以上式≥0
所以 右边≥左边 即
x+y+1/xy