先化简再求值:[(x-2/x+2)+(4x/x^2-4)]÷(1/x^2-4),其中x=-5
问题描述:
先化简再求值:[(x-2/x+2)+(4x/x^2-4)]÷(1/x^2-4),其中x=-5
答
你好,很高兴为你解答~
原式=[ (x-2/x+2) + 4x/(x+2)(x-2) ]÷1/(x+2)(x-2)
=[(x-2)^2+4x/(x+2)(x-2)]*(x+2)(x-2)
=[X^2+4/(x+2)(x-2)]*(x+2)(x-2)
=X^2+4
代入x=-5得原式=(-5)^2+4
=25+4
=29
希望能够帮助到你,谢谢~
答
:[(x-2/x+2)+(4x/x^2-4)]÷(1/x^2-4)
=[(x-2)/(x+2)+(4x/x^2-4)]×(x^2-4)
=(x-2)/(x+2)×(x^2-4)+(4x/x^2-4) ×(x^2-4)
=(x-2)²+4x
=x²+4
当x=-5时
原式=(-5)²+4
=29