设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
问题描述:
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
答
∫(-a,a)f(x)dx=∫(-a,0)f(x)dx+∫(0,a)f(x)dx对∫(-a,0)f(x)dx,令x=-t x=-a t=a; x=0 t=0 ; dx=-dt得:∫(-a,0)f(x)dx=∫(a,0)f(-t)(-dt)=∫(0,a)f(-t)dt=∫(0,a)f(-x)dx故∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx...