若f(x)有二阶导数,且f(0)=f(1)=0,lim(x→0)[f(x)/x]=0,则在(0,1)内至少存在一点ξ,使f"(ξ)=0

问题描述:

若f(x)有二阶导数,且f(0)=f(1)=0,lim(x→0)[f(x)/x]=0,则在(0,1)内至少存在一点ξ,使f"(ξ)=0

f(x)有二阶导数,则f(x)一阶导数及f(x)连续可导 f(x)/x→0(x→0)则f(x)→0(x→0) 而f(x)连续,则(x→0)时,f(x)→0=f(0)=0 则f(x)/x→0(x→0)=[(f(x)-f(0))/(x-0)]→0(x→0) 即f'(0)=0 因为f(0)=f(1)=0,根据罗...