证明(2xcosy+y^2*cosx)dx+(2ysinx-x^2*siny)dy 某个函数u(x,y)的全微分,并求出u(x,y)
问题描述:
证明(2xcosy+y^2*cosx)dx+(2ysinx-x^2*siny)dy 某个函数u(x,y)的全微分,并求出u(x,y)
答
证明(2xcosy+y^2*cosx)dx+(2ysinx-x^2*siny)dy 某个函数u(x,y)的全微分,并求出u(x,y)