已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.
问题描述:
已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.
答
∵抛物线对称轴为x=-1,图象在x轴上截得线段长为4,
∴抛物线与x轴两交点坐标为(-3,0),(1,0),
设抛物线解析式为y=a(x+3)(x-1),
将顶点坐标(-1,-4)代入,得a(-1+3)(-1-1)=-4,
解得a=1,
∴抛物线解析式为y=(x+3)(x-1),即y=x2+2x-3.
答案解析:根据对称轴为x=-1,图象在x轴上截得线段长为4,可知抛物线与x轴两交点坐标为(-3,0),(1,0),设抛物线的交点式,将顶点坐标代入求a即可.
考试点:抛物线与x轴的交点;二次函数的最值.
知识点:本题考查了抛物线与x轴的交点,顶点坐标与对称轴的关系.关键是根据对称轴及抛物线在x轴上截得线段的长度确定抛物线与x轴的交点坐标,利用抛物线的交点式解题.