计算:1×2+2×4+3×6+…+1005×2010=______.

问题描述:

计算:1×2+2×4+3×6+…+1005×2010=______.

1×2+2×4+3×6+…+1005×2010=1×1×2+2×2×2+3×3×2+…+1005×1005×2;=2×(1×2+2×2+3×2+…+1005×2),=2×[1005×(1005+1)×(1005×2+1)÷6],=2×(1005×1006×2011÷6),=2×(2033181330÷6),...
答案解析:因为1×2+2×4+3×6+…+1005×2010=1×1×2+2×2×2+3×3×2+…+1005×1005×2=2×(1×2+2×2+3×2+…+1005×2),所以,本题据巧算公式1×2+2×2+3×2+…+n×2=n(n+1)(2n+1)÷6进行巧算即可.
考试点:四则混合运算中的巧算.
知识点:1×2+2×2+3×2+…+n×2=n(n+1)(2n+1)÷6巧算中经常用到的公式之一.