函数f(x)对于任意非负实数x,y都满足f(x+y^2)=f(x)+2[f(y)]^2,且f(x)》0,f(x)不等于0,则f(2+根号3)=?

问题描述:

函数f(x)对于任意非负实数x,y都满足f(x+y^2)=f(x)+2[f(y)]^2,且f(x)》0,f(x)不等于0,则f(2+根号3)=?

f(2+√3)=f(√3+(√2))²=f(√3)+2[f(√2)]²
f(0)=f(0)+2f²(0) ∴f(0)=0
∴f(1)=f(0+1²)=f(0)+2f²(1) ∴2f²(1)=f(1) ∵x>0,f(x)≠0 ∴f(1)=1/2
∴f(2)=f(1)+2f²(1) =1 ∴f(3)=f(2)+2f²(1)=3/2
∴2f²(√2)+f(0)=f(2)=1 ∴2f²(√2)=1 ∵x>0,f(x)≠0 ∴f(√2)=√2/2
∴2f²(√3)+f(0)=f(3)=3/2 ∴2f²(√3)=3/2 ∵x>0,f(x)≠0 ∴f(√3)=√3/2
∴f(2+√3)=f(√3+(√2))²=f(√3)+2[f(√2)]²=√3/2+2×1/2=1+√3/2

f(2+√3)=f(√3+(√2))²=f(√3)+2[f(√2)]²f(0)=f(0)+2f²(0) ∴f(0)=0∴f(1)=f(0+1²)=f(0)+2f²(1) 2f²(1)=f(1) x>0,f(x)≠0 ∴f(1)=1/2f(2)=f(1)+2f²(1) =1 f...