答
(1)令x=y=1,则f(1×1)=f(1)+f(1),得f(1)=0;
再令x=y=-1,则f[(-1)×(-1)]=f(-1)+f(-1),得f(-1)=0.
对于条件f(x•y)=f(x)+f(y),令y=-1,
则f(-x)=f(x)+f(-1),所以f(-x)=f(x).
又函数f(x)的定义域关于原点对称,所以函数f(x)为偶函数.(3分)
(2)任取x1,x2∈(0,+∞),且x1<x2,则有>1.
又∵当x>1时,f(x)>0,
∴f(>0.)
而f(x2)=f(x1•)=f(x1)+f()>f(x1),
所以函数f(x)在(0,+∞)上是增函数.(6分)
(3)∵f(4)=f(2×2)=f(2)+f(2),又f(2)=1,
∴f(4)=2.
又由(1)知函数f(x)在区间[-4,0)∪(0,4]上是偶函数且在(0,4]上是增函数,
∴函数f(x)在区间[-4,0)∪(0,4]上的最大值为f(4)=f(-4)=2(9分)
(4)∵f(3x-2)+f(x)=f[x(3x-2)],4=2+2=f(4)+f(4)=f(16)
∴原不等式等价于f[x(3x-2)]≥f(16)
又函数f(x)为偶函数,且函数f(x)在(0,+∞)上是增函数,
∴原不等式又等价于|x(3x-2)|≥16,
即x(3x-2)≥16或x(3x-2)≤-16,
∴不等式f(3x-2)+f(x)≥4的解集为{x|x≤−2,或x≥}(12分)
答案解析:(1)先求f(-1)的值,令y=-1,推出f(-x)=f(x)+f(-1),f(-x)=f(x).结合函数奇偶性的定义,判断函数f(x)的奇偶性;
(2)利用函数单调性的定义,直接判断函数f(x)在(0,+∞)上的单调性;
(3)通过(1),(2)奇偶性,单调性,直接求函数f(x)在区间[-4,0)∪(0,4]上的最大值;
(4)利用函数单调性,奇偶性,不等式f(3x-2)+f(x)≥4,转化为|x(3x-2)|≥16,然后求出不等式的解集.
考试点:函数奇偶性的判断;函数单调性的判断与证明;函数的最值及其几何意义;抽象函数及其应用.
知识点:本题考查函数奇偶性的判断,函数单调性的判断与证明,函数的最值及其几何意义,抽象函数及其应用,考查分析问题解决问题的能力,是中档题.